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We consider the game problem of the encounter of a conflict-controlled phase 
point with a given set. We prove sufficient conditions for the successful com- 

pletion of a nonlinear game of encounter. These conditions are based on the 

idea of minimax extremal aiming [I]. The given aiming is realized here on 
the basis of absorption sets r2]. These sets are constructed with the aid of 

auxiliary motions generated by program controls which are represented by suit- 

able Bore1 measures in accordance with the well known techniques [33 of gene- 

ralized solutions of ordinary differential equations. 

1. Statement of the problem, We consider a controlled system described 

by the vector differential equation 

i = f (t, t, ZL, u) (1.1) 
Here z is the system’s IL-dimensional phase vector, . u and LP are r-dimensional vector 

controls of the first and second players, respectively, constrained by the conditions rL E: 
V, u E Q> where I-’ and Q are bounded closed sets. The function f (t, II‘, 11, 1’) is 
assumed continuous for all argument values to be considered and satisfies a Lipschitz 
condition in z in every bounded region of the space {.r}. Furthermore, the following 
conditions for the continuability of the solutions 5 It] for Eq. (1.1) are assumed to be 
fulfilled. Let F (t, x) =: co* {f (2, .z, ZL, v): u E l-‘, v E Q}, where co* {fj 
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denotes the closed convex hull of a certain set {f} of vectors f. Then we take it that 

for given t = t, and for a bounded region G in the space {x} , for any 6 > t, we 
can find a number /? (t,, G, 6) such that every solution 5 (t) of the contingent equa- 

tions [4] 
2 (t) E F (4 x (t)) (1.2) 

under the conditions z (t*) E G, (t, < t, <fb ) , satisfies the inequality 

II J: (t) II < B (t,, G, 6) (1.3) 

for all t, < t <8. Here and below I] z 11 d enotes the Euclidean norm of vector Z. 

By the problem’s hypotheses, in the space {z} we are given a closed set nf which con- 

stitutes the first player’s target. 

We define strategies u + u (t, Z) by means of functions u (t, x) which associate 

a certain vector u with every possible position {t, Z} ( l ) . Any strategy u -+ u (t, x) 

constrained only by the condition u (t, LZ) E P for all values of arguments t and 5 

being considered, is assumed to be admissible. Let [ri, ti+l) (i = 0, 1, 2, . . .) be 
a certain system A of semi-intervals covering the semiaxis [t,, CX) ) (a,, _= t,). Let 

us choose some measurable realization u [t] (t* 6 t < a~) of the second player’s 

control U, constrained by the condition u[t] E Q. An absolutely continuous function 

z3, It], satisfying the initial condition zA[t,] = Z* and the equation 

XA’ [t] = f (t, XA [tIl u (ri, 5~ [~il)l 0 [ * I) (1.4) 

for almost all Ti < t < 7i+l (i = 0, 1, 2, . ..) : IS called Euler’s polygonal line 

x?, it] = 5A It, t,, J.+, U, v 1. ]] . Here u (t, Z) is precisely that function which 

corresponds to the strategy U fixed in the notation Z~ [t, t,, x*, U, z’ 1 .I] . By a 

motion z It] == XT [t, t,, LC*, U] of system (1.1) under a strategy U +- u (t, 2) 

chosen by the first player we mean every function J: [t] (t > t,) which on any finite 

interval [t,, Q I is the uniform limit of a certain suitable sequence of Euler’s polygonal 

lines x‘\(k) It] = xA(h.) It, t,, .L.$), u, ZI(~) la]] (/; = 1, 2, . ..) under the condition that 

lim [supi (ri(:i - $))I = tJ as k -+ 00. In these terms the first player’s problem 

of leading the phase point I” ]1] onto set nf is stated in the following manner. ’ 
Problem 1.1. For a given initial position {t,, z,,) find a strategy UL -+- 11’ (t, 

Z) which would guarantee the encounter of any motion x [t] x x [t, to: .ro, IJ ] 
with set M, i.e. would ensure for any such motion z [I] -z n: [t. t,: J,, U’] the ful- 

fillment of the condition 
x[P]EM (15) 

at some instant t =: t* < oo , possibly, at its own instant t* (XI a]) for each motion 

z It1 (t > t,). 

2. Program controls. Let us define the class of auxiliary controls 7 to be con- 

sidered and of the auxiliary motions z (t) generated by them. On the semi-interval 

T = It,,0 ) we identify the program controls 11 = 11 (dt, du, &J) with regular Bore1 

measures 11 (dt, du, du) defined in the space {t} X {u} :~ {u}, concentrated on 

the set 1’ ?< 1’ X v , and normed in such a way that the equality 

7j (T” X P x Q) = t* -t* (2.1) 

*) E di tar ‘s Note. The symbol f denotes the correspondence between the strategy 
and the function prescribing this strategy. 
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is f~~lfillctl for any setlli-interval [t,, t*) .~-. l’* c T, i.e. the measure of the set 

1’” >: 1’ x Q equals rhe length of the semi-interval I’*. The measures 11 (dt, du, 
dv) will be treated as elements of the space of linear functionals x,, [CF] defined on 

continuous functions q (t, U, U) so that in accordance with [S] 

x,, [cc] = s s j cp (t, U, L’) 11 (dt, du, W (2.2) 

Everywhere in what follows the weak topology in tile space of measures q jd2, tllr, &I) 

is to be understood in the sense of the weak topology in the space of the functionals 

x,, [rp] in (2.2) with respect to the original space {rp} of continuous functions (p (t, 

II, u). The program motion s(t) = ~r(t, t,, J*. 11) (ta < t GO) generated by the 
program control q ~~ 11 (dt. drt, (II?) from the position {t*, ~.*},is defined as the solu- 

tion of the following integral equation : 

(:x) 

By standard methods of the theory of ordinary differential equations we can establish 

that under the assumptions made on the right-hand side f (t. ,x. 71, 7’) of Eq.(l.l) the 

integral Eq. (2.3), for every choice of position {f,. .I’* } and of the admissible control 

11 -7: ‘1 (dt, tlu, du) , has a unique absolutely-continuous solution ,I’ (1) continuable 

for all values of t f? [1,. 0 1. For any choice of a bounded region C in space {.I,} all 

program motions I’ (1) x (1. t,. .J:t:. il)(t, < t & 0 ) turn out to be uniformly 

bounded and equicontinuous for all possible t, by It,,, 0). ,I* -7 (: and 11 -. 11 (cit. 
t/7{. clr). If some sequence of controls {I$‘~)} (I; = I, :!. .) converges weakly a:-I,,-+co 

to a control lj*. then the corresponding sequence of motions ,/(A) (t) - .c’ (1. 1,. J:~. 
II(Q) converges uniformly to the motion .I.* (t) ~-- .r (1. I,. x:.. I]*). t:inally, the 

motions 2’ (I) 7 s (2. I,. .r*, Il)are uniformly continuous with respect to the initial 

conditions for { 1,, se } from any bounded region t,, C: t, <II .I’:.: -:: G, and, moreover, 

are equicontinuous in i and 11. 

Regular Bore1 measures p ((it, t/t/) defined in the space {t> ~, {I(}. c-oncentrated 

on the set T S 1’. and normed so tnat the equality 

p (T” :< I’) :: t* - t,: (2.5) 

is fulfilled for any semi-interval It,. I*) : 7’* c_ 7’ , i.e. the measure of the set 

T* ‘. /’ equals the length of the semi-interval 7’“. are called the program controls 

it p (dt, r/u) of the first player on the semi-interval It,,. I’}). In what follows we 

assume that a certain set {It (dl. r/(r)} of controls !L = ft (ti/. c//l,) is fixed. These 

controls 61 1’ (df. (177) r-_ {{I (dt. d/l) 1 are called the admissible program controls 

of the first player on the semi-interval II ,,. ib ). In particular, the set of all regular 8orel 

measures 1~ (dt. du), satisfying condition (Z-4), can be chosen as the set {!I (tit. c/(i)} 

of the first player’s admissible progranl controls 11 :-- 1’ (tit. d/l). 
In what follows the program controls I]. }t , and the progran, motions J (l) generated 

by them, will often be considered on time subsets frown the semi-interval 1 t,,. I? ) or 
from the interval I/,,. f) 1 , respectively. In order to emphasize tllis fact, we shall sotne- 

tillles wrltc the nota:ion<rftile ti~l~t’sllbset selected after the notation of the corresponding 

conrrolor motion. t;orexample,the entry II. (,i* < t Y: t*) or Ii. I I:!;. I”) means that 

the measuIe 1) (c/t. (/L(. cl(?) fornling a given program control, is to be considered on a 
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subset of 7’* X 1’ X (1, where 7‘” = It,, 1*). The part of the control ‘11, (t, < 

1 <o), specified by the measure ?I (c/l, C/U, dv) on the whole set T >< 1’ ;< C?> 

being considered as the control I] = 11 (dt, C/U, du) (t.+ < t < t*) on the semi- 

interval P’* = lt,, t*) CI ii,;, CJ) ~~ T, will be called the control segment 11, [to, 0) 

corresponding to this semi-interval It,, 2”). 
Further, we assume as fixed a certain set {II (c/Z, tlli. du)} of admissible program con- 

trols 11 (c/t, dtf, dc). We assume that this set is convex and weakly-closed. Since the 

set of all possible regular Bore1 measures 11 (dt. ~ZL, do), satisfying condition (2.1). is 

weakly compact in itself, the weakly-closed set {I] (t/l. c/U. C/I.)} of all admissible 

program controls 11 (tit, du, du) also is weakly compact in itself. 

Every weakly-closed collection (7 (dt? du, du), it,... I*)},, is called the second 

player’s program on some semi-interval [t,, t*) -z T”, comprised of admissible prog- 

ram controls ~1 = 11 (t/l. flu, tic) considered on the set I’* ZC 1’ X v and satisfying 

the following condition : whatever be the first player’s admissible program control 

IL= 1’ (tit. du) E {p (tit, du)}. in the program {I] (dt, tlrt, r/l.). II,, t*),\,, we 

can find at least one control 11 (c/t, cilc, t/l,) matched with the measure tt ((it. II/U) 

by the condition 
I] (A s II x Q) = p (A X n) (2.5) 

which must be fulfilled whatever be the measurable sets il c T* and ,!3 c 1’. 

Let us fix a certain value .I’ -- .I’* and a certain IL-dirnensional vector s. The prog- 

ram (11 (t/i. do, (II.), [I,, 2*), .I’.+., .s)n is said to he extremal to {.C*, s} on the 

semi-interval 1 t,. t*) if it forms a convex and, as is every program of the second play- 

er, weakly-closed set of program controls 11 (c/t, (/I(. dr.) and satisfies the condition 

where { qjrr = ; 11, [t,, t:+), .I’:., .s)~~. Here and below the prime denotes transposition 

and, so, the symbol s’f denotes the scalar product of vectors s and j. The symbol 

0~ (0) denotes a small quantity of order higher than i,, nloreover, the estimate o(: (n) 

is assumed to be uniform in I:, : II,, 1’1 1 and {J*} ~1: (;, where (I is any preselected 

hounded region in the space {J). The set {tl (dl, cl/t. tir.} of admissible program 

controls 11 (r/f, (/II. (il.) is assumed to be so complete that at least one extremal prog- 

ram (11 (t/t, drt, tll.), It,. t*). .r*, s}~ cau hc set up for any choice of if,. I*) c 

Ir,.O), :(‘* and s . Furthermore, we assume that the control 71 (dt, d7!, tb) [2*,0), 

made up frown segments of the two adlnissihle controls 11 (t/r. (Ill, r/l:), It,. t*). 11 (dt, 

dlL, dv), II”,17 ). is once again an admissible control. The completeness condition 

stated is fulfilled in every case if as the set of admissible prograrn controls we choose 

all possible regular Bore1 measures satisfying condition (X.1). because then for any choice 

of X+ and s and of the semi-interval [t,. t*) there exists at least one extremal prog- 

rain {tl r//I, drr. tir), It,, t*), P*, S}II. This program can be ohrained. for example, 

in the following manner. We choose some admissible control tL = 1’ ((il. t//c) and we 

consider the part of it corresponding to rhe semi-interval [t:,. t”). \z’e can construct 

a Bore1 measure ~1 (c/t, t/7/. ~(7.) matched with the chosen control IL (t/t, t/r0 hy 
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condition (2.5) and simultaneously satisfying the condition 
I* * 

If now with each admissible control p ‘-=: p (dt, du) (t* < t< t*) we compare all 

possible regular Bore1 measures q (dt, du, du) (t* < t < t*) matched with it by con- 

dition (F&5), satisfying condition f&7), and we take the weakly-closed convex hull of 
all such measures q (dt, du, du) corresponding to all possible admissible controls 

/t = lr (dt, du) fZ &r tdr, du)}, h t en we obtain the needed extremal program 

{q (dt, du, W, [t*, t*), x1, s)n satisfying condition (2.6). 
The formal definitions presented can be meaningfully clarified as follows. Suppose 

that some position {t*, z* j has been realized. Then the second player is allowed to 
freeze this position mentally and to choose mentally a certain program {n (dt, *CL%, 

du), EC,, tY))n of his own for the future t, < t <S . The second player informs the 
first player of his choice, After this the first player can choose mentally an arbitrary 

admissible program control q = q (dt, du, &J) (t, < t < 6 ) contained in this 

program (q (dt, du, &I), [t,, S)} which the second player has planned. The control 
q = q (dt, du, dv) chosen in this manner determines a certain imaginary program 

motion z (t) = x (t, t,, x*, 7) by (2,3). Here, in each case, the first player’s choice 
proves to be so broad that he has the possibility of at least choosing from the program 

{q (dt, du, W, [t,JU) II an admissible control q = -q (dt, &L, dv) matched by 
condition (2.5) with any admissible program control lr = p (dt, du) C? (,u (dt, du)} 
at which the first player wishes to fix his own choice. Meanwhile, the second player 

also has a sufficiently large selection of programs {q (dt, du, du), 1 t,, 6 )}n, because 
he has the possibility of sticking at any program {q (dt,‘du, du), [t,, 6 )}n constructed 
on the basis of one or of some set of extremal programs (q (dt, du, dz?), I-C*, z*), z.+., 
s}n whose choice, under the condition posed, is sufficiently wide. It is clear that in 

the proposed construction these meaningful concepts have been coded in the form of 
measure-controls mixing the ordinary controls u and V. Thus, the proposed programs 

(9 (dt, da, du), lt,,@))rt and controls 21 := q (dt, drt, dv) E (11, it,? -If ) >n, 

related to the controls p = 1~ (dt, du) by condition (2.5), indeed do bear the charac- 

ter of the formalizations corresponding to the meaningful concepts of a program con- 
trol and of the corresponding concepts of minimax program absorption from El]. 

It should be stressed that the procedure described for selecting the program (q (dt, 

du, d4, It,,s)} II and the control y (dt, du, dv) E {q (dt, du, du), It,, @)}JJ 
was not provided in the conditions of the initial Problem 1.1, and this procedure is of 

an auxiliary nature. The presentation of the auxiliary program motions IL’ (t) allow US, 

however, to evolve a certain auxiliary extremal construction which serves as the found- 
ation for forming the control u , and solving Problem 1.1 at every position { &, J* } 
even during the actual game. Moreover, the motions .r [t] -= .X If. f,, 2,). I/:] are now 
formed on the feedback principle in accordance with the scheme described in Sect. 1 

and based on the construction made up from the Euler’s polygonal lines (1.4). 

3. Auxiliary program problams. We consider two auxiliary problems of 
optimal program control. On their foundation we shall formulate conditions for the 

regularity of the original game, sufficient for the successful solving of Problem 1.1 by 
the first player. The solutions of these auxiliary problems furnish us with the concept 
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of absorption sets [Z]. These sets constitute the basis of the extremal construction which 
determines the strategy u” solving Problem 1.1 in the regular case. By the symbol 
p (2, ni;!) we denote the Euclidean distance from a point z to a set M. The first 
auxiliary problem is the problem of an optimal program control ‘1 minimizing the 

quantity p (X (6 ), .‘ll) . 
Problem 3.1, Given a position {t*, x*}, a number 6 > t, , and a program 

(,rl (&, du, do), [r*, s)>rI. find the optimal admissible program control 

?I0 (dl, du, dv 1 it*, 61, 2*, ($II) E (r 6% d% d& It*, qhl 

which satisfies the condition 

p (X (6, t,, x*, q’), M) = minT,E(*,)np (z (+,Gw 4~ 11>, J4 (3.1) 

The program motion r (t) = 5 (t, t,, x*, q”), generated by the optimal control 

rc = Y0 (& du, dv I It*, 6), x*, (q>aA is called the optimal program motion 
solving Problem 3.1 and is denoted by the expression &’ (t) = a? (t, t,, x*, 1“ 16 , 
{q}n). From the condition that the collection of admissible controls q, making up the 

program {q W, du, dv), It,, 6) jn, f orms a set weakly compact in itself, we conclude 
that for each choice of position {t*, X* }, of number 6 > t, and of program (q(dt, 
du, du), It,, 6)}n, Problem 3.1 has a solution q’ (dt, du, dv). Indeed, let us exa- 
mine some minimizing sequence of controls q(k) E {r, it,, 6 ) In (k = 1, 2, . . _) 
which satisfies the condition 

lim I’ (1. (ly, t,, J*, @Q), M) =z inf,,cs,jn p (Z (6, t,, x*, q), M) 
k-em (3.2) 

From this sequence we can select a weakly convergent subsequence q”j’ (f ;T= 1, 2. . ..). 
for which, as we have noted above, the corresponding sequence of motions xtkjf (f) = 

J (t, t,, x*7 -,l@f I ) converges uniformly on the interval [t,, 6 1 to the motion 

X* (t) = x (2, t,, .‘z*, I]*) (2.3) generated by the admissible control 7” = 7” (dt, 

<ill, dv) <E (11 (dt, du, do), It,, 6)) II, which is a weak limit for the sequence qtki’ (dt, 
C~U., du). But, by definition of x* (t) , from (3.2) follows the equality 

1’ (2+ (61, M) = rnin~~~~}~ Q (z (6, &, %., % M) (3.3) 

which also proves that the program motion X* (t) is the optimal program motion solving 
Problem 3.1, and the admissible program control q* generating it, is of the optimal 

program control ?j” (dt, du, du ( It,, 6 ), r*, {T)~) for this problem. Thus, we 
have verified the existence of a solution of Probem 3.1, The second auxiliary problem 
is the problem of an optimal program control 11 which supplies the maximin to the quan- 

tity $1 (r(6), 
Problem 3. 2. Given a position {t*, X* ) and a number 6 > t, , find the opti- 

mal admissible program control 11” (d2, du, dv 1 [t,, 6 Jt &)” which satisfies the 

and ‘11’ (df, dzt: dc)’ E (11 (dt, du, dv), ft,,@), z*}ir”, where (q (dt, d@, <ii’)* 
Ii,.\?, ), x.+ }n” is that program which maximizes the right-hand side of equality (3.4). 

The program motion *r(t) :- x (t, tg,xy;, 1 1 “) generated by the optimal control ‘1’ =L 

11’ (dt, till, c/V 1 It*, 0 ), X*)“is called the optimal program motion solving Problem 3.2 
and is denoted by the expression 1” (t) ’ =: x” (t, l,, J’~, ~1” I@)“. 



936 N.N.KrasovsklJ 

First of all it is necessary to verify the existence of the solution 11 ((it, do, &j j [t,, 
6), “*)5 of Problem 3.2. To do this, according to what has preceded, it suffices 1.2 

verify the existence of the program (71 (dt, du, dv), [t,, a), x+.}~~“ maximizing the 
right-hand side of (3.4). Let us show that such an admissible program (11, It,, 6 ),x* >rrO 

exists for every choice of {ty;, x*} and 6 > t,. Indeed, we consider any maximizing 
sequence of programs (11, It,, @)}fi) (h: : 1, 2, . . .) which satisfies the condition 

il; (rfiin~Ell,l~f~) F (II: (6, t*, % r)), J@) = (3.5) 

sup{,j, (minnE(,iTl f) (z (6, t*, % rlh W) 

We consider all possible weakly-convergent subsequences (?l@j’j of admissible controls 

rl(‘j) E (27, [t,,rY)}y (f :--- 1. 2, . ..). We consolidate the weak limits q (d2, c~U, 
dv) of all such subsequences into a certain set {rl (dt, dU, dU)}*. As a consequence 
of the weak compactness in itself of the set (q (C!t, dlu, du)) of all admissible con- 

trols 11 (tEt. du, du) , each of the weak limits 11 (&, du, du) being considered is once 
more an admissible program control. Thus we have obtained a certain set {q (dt, dU, 

dv)J * of admissible program controls. It is not difficult to verify that this set satisfies 
the requirements made of the program on the semi-interval [t,,$$). Thus, we have 

constructed a certain program (q (dt, du., du), It,, 6) >n*. 
It remains to check that this program is a maximizing one for (3.4). We assume the 

contrary. Then among the admissible program controls 11 E {ll, [t,, O)}n* we can 
find a control T)* which generates a motion X* (t) = 5 (t> t,, x*, q*) satisfying 

But, by the construction of the program (.r~}; , for the measures q* = v* (dt, du, du) 
we can find a subsequence, converging weakly to it, of admissible controls ~l(“‘j) = v(#j) 

(dt, &A, du) E (q>$’ (j := 1% 2, . . . f . The sequence of program motions ~(“2) (t) = 

II: (t, t,, x*, rl(‘j)) from (&3), generated by it, converges uniformly on the interval 

It,,\?] to a program motion Z* (t) .=: x (t, t,, z*, 71”) froi,r (2.3). However, by 
the construction of X* (t) , we now have 

Relations (3.6) and (3.7) are contradictory. The contradiction obtained proves that the 

Program {rl, [t* 7 6 ) );I constructed is the desired maximizing program {q, It*,@), 

x1 )n* solving ProbIem 3.2. Thus, we have verified the existence of a solution of Prob- 

lem 3.2 for every choice of position { 1,, x*} and of number 6 > t* . 
Generally speaking, a solution of Problem 3.2 can furnish a nonunique maximizing 

program @I, It,,Q), x,)Pr. Therefore, it turns out to be appropriate to introduce the 
notion of a maximal maximizing program {r~ (dt. drc, t&p), ff,,_it). x,}; for Problem 
3.2, as the program which contains every other maximizing program {v (dt, du, df.:), 
It,,@), x.+ >ir for this same problem. This program exists because as such, it is suffici- 

ent to select the weakly-closed union of all maximizing programs (11 (f?t, dzr, &), 
It*, 6), X*}rr. For the following it is important that with a change of initial point Z* 

the maximal maximizing program {;I. if,, fi), J,};; varies weakly upper-semiconti- 
nuously with respect to inclusion. Namely, the following assertion is valid. YO 

Lemma 3.1. Let {,~.(l;)f and I/“‘) .- (tl. It,. it ), .,(‘“}l, he sequences of initial 
points and of admissible controls, n~oreover, let 1 i rn cc’“) = n’$ and let the measures 
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@) (dt, du, dv) converge weakly to the measure q* (dt, du, dv) as k -+ 00. Then, 
the admissible program control a* = q* (dt, du, du) is contained in the maximal 

maximizing program {tj, It,,@), z,G. 
For the proof we form a weakly-closed set {q}* composed of all possible weak limits 

‘1 for all possible weakly-convergent subsequences of admissible controls ?JE {q, It,, 
6 ), #i)}E. We can again verify that the set {q}* forms an admissible program. 

Furthermore, this pcogram (TV, it,,@), z* & is the maximizing program (VI, It,, fi ), 
z, }A. Indeed, otherwise we would find a weakly-pungent subsequence tlfkj) (dt, du, 

dui weakly tending to q,Jdt, du, du) for which the sequence of program motions 

2( j) it) = 5 (t, t,, z(“j), v(kj)) converges uniformly to the motion z*(t) = z (4 t,, 
f*, tl*) such that 

lim p (Pj) (tl), M) = p (t* (6}, M) < min p (s (@, t,, 5*, q), M) (3-Q 
j-m E{rr$ 

But then, as a consequence of the uniform and equicontittuous dependence of the solu- 
tions X (t) of integral equation (2.3) on the initial &a, we would obtain that for suf- 
ficiently large values oi f , min 

m30* tt.. a. sr; 
P (8 64 t,, dkj’ I q), M) > 

min 
et(n. [I., 4%) P# i * 

P (z 6% f*, z(kj’, q), M) (3.9) 
t xl 

However, inequality (3.9) contradicts the assumption that {tb It,, 6 ), ~(‘~1)~ is a ma- 

ximizing program for the initial position {t*, #r’}. The contradiction obtained shows 

that {rl, [&.,a), z*)g = 
z,& and,the 

{tl, !&,a, z*}f;, i.e. (tl. it,,@), z,}g c (rt, L@)., 
re ore, the weak limit q* (dt, du, &} for evety sequence {@ (dt, f 

du, du)} (k = 1, 2, . . .) of the form being considaed is, indeed, contained la the 

program {rl, [t*,*), +}“R. By the same token, we have proven Lemma 3.1. 

4. Regularity oonditionr. By the symbol e, (t, , t*, 6 ) we denote the 
quantity on the right-hand side of equality (3.4). i.e., 

We choose a certain position {t*, x* ) for which 

~o@*,~*,fi) = E>O (4.2) 

kt t* = t, + 6 &6. We fix some admissible exttemal program {?j (dt, dn. du), 

It,, t*), I*, s}n.The admissible program controls q (dt, du, du)(t, < t ( t*) 
from the extremal program selected, generate in accordance with Eq. (2.3), a certain 
set of program motions x (t) = z (6 t,, X:*, Q)(t, < t S$ t*) whose final values 
3: = J (t*) constrtute a certain set X (t*, {t*, z*}, {q}n). Along with the program 

motions I (t) which are defined by Eq. (2.3). we consider also certain auxiliary mo- 
tions z (Q* = 5 (f t,, x*, q)* (t* & t < t*) which are defined by the equafi- 
ties 

x (t)* = X* -/- i s \ f (t, 58, u, v) rl (dr, du, du) (4.3) 
1.. r4 

The final values x := z (t*)* of these motions form a certain set X* (t* , {t*, J* }, 
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{q),,). It is not difficult to verify that under one and the same admissible control q :- 
t-, (dt, &, &) the motions x (t) and z (t)* satisfy the estimate 

II 5 (t*>* - 22 (t*) 11 < fc (6) 6 (4.4) 

where the function (p (8) satisfies the condition 

;i$ ‘p (0) := 0 (4.5) 

and, so, forms an infinitesimal o (6) = ‘p (6) 6 of a higher order of smallness relative 

to 6 > (I. Here, the estimate (4.4) is uniform in ‘1 in every bounded closed region G 
of space {z> for t,, < 2, <I?. Thus, the distance y (X*, X) between sets X* and 

X, defined as the quantity 

(4.6) 

satisfies the estimate 
(4.7) 

It is important to note that by the properties of the extcemal program {V> Lt,, 
t*). “t’.+. s}l~ the set x* is bounded, convex, and closed. 

We now select some point .P E X*. The position {t*, x* ) corresponds to the 
lo 

maximal maximizing program (11, 1 t”. 1’) ). x* jn. By the choice of the initial position 

(1,. J’:::> (4.2) and by definition of the quantity e, (t*, IC*. 8) mm_ t: (4.1) andzf the 

set ~1 , we conclude that we can find a control 11 (c/t, LIU, du) E {?I it* .i) ), n.* }tt and 
a point x’ .: X such that the condition 

f’ (L (.I’) ), :I/) < E (4.81) 

is fulfilled for the corresponding program motion x (t) J (t> t*, x, 11) (t” < 
t <i3 ) (2.3). Hence, as a consequence of (4.7) we derive that in set A? we can find 
a point .X - LC** and a control 11 (dt, (~II, cjv) E (11, [t* ,fj ), x* };; such that the 
condition 

f) (LX), 6), M) < “* = E $- Kcp (6) 6 (4.9) 

is fulfilled for the corresponding program motion IC (t) s (t, t*, ATT** q) (t* < 
t G’s > 2.3), where the constant K = exp 2. (8 - t,) and h is the Lipschitz constant 

for the right-hand side f of Eq. (1.1) in a suitable sufficiently-large bounded region G 
of space {x.} in which lie all the motions being considered. Inequality (4.9) is derived 
as a consequence of the inequality 

j/z (t, t** x*, 11) - rz’ (t, t*, 2, q) II< j/x* - z /j c?xp h (t - t”) (4.10) 

which relates every two solutions x (t, t* , LX*, q) and x (t, t* , x, q) of Eq. (2.3) 

under one and the same program corm01 TV. 
Thus for each point z* E X* we can construct a certain nonempty set 1’ (x*) con- 

sisting of all points .r* * 63 X* for each of which we can find at least one admissible 

control p E (.rI, Il*,S), P} g such that the corresponding program motion z (t) = 

x ft, t*, L-P-*, q) (t* < t <fj ) (2.3) satisfies condition (4.9). By the symbol 
f-* (x*) we denote the closed convex hull of set Y (x*). We can now formulate one 

of the appropriate conditions for the regularity of the game. 
Condition 4.1. We say that the game is regular for some value fi > to if 

for any sufficiently small value of p > fJ and any bounded closed region G in space 
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(.r> we can find a function cp* (6) satisfying the condition 

EMT* (6) = 0 (r,.ll) 

and such that for any position (t*, x9)‘, x* E G, to < t, &S , e. (E, I*, S) = 
E z [p , fi”], for any extremal program (7, It,, t*), x*, s}~$ and for any point 5* E 

x* (t* I {.f*, Gk 1, Ml) t we can find, for every point 5 E Y* (a~*) , a control 

q (dt, du, a%) E (n, It*,+), .t?)z such that the condition 

p (3 (6), A+7 G a* = n + (p* (6) 6 (4.12) 

is fulfilled for the corresponding program motion x (t) -= x (t, t*, 2, q) ft* < 

t <s> C&3). 
bar: and below p” denotes a certain sufficiently-small fixed positive number and 

t * = t * -{- 8, Note that for the fulfillment of Condition 4.1 it is obviously enough that 
the sets Y (3”) themselves prove to be convex sets. This condition turns out to be a 

natural one when Eq. (1. I) is linear, even if with respect to x, and the target set turns 
out to be convex (for example, see fl. 63). Moreover, for the fulfillment of Condition 

4.1 it is sufficient that the sets Y (z*) and Y* (x*) satisfy the estimate 

Y (Y (?I, Y” (X*1) < q* @I 6 (A. 13) 

where 
lii(p*@) =A (4.14) 

because to fulfill condition (4.X) it is sufficient to set rip* (6) = K (<p (6) -!- Cp* (6)). 
NOW by the symbol Ymiil (x*) we denote the set of those points z’ E X* (t*, 

@*7 2* >- (~jfn),for which the condition 

min p (z (6, t*, ,x0, q), M) rl mill min p (;I: (S, t”, -t‘, $I, Jf) (4.15) 
l;Etn!xOo .i.EX” n-z(gjnOO 

is fulfilled. where the minimum is taken over all controls 9 E (11. It*, 6 ), .T* 1;;. 
By the symbol Ykill we denote the closed convex hull of set I1lnir,. Then, another 
appropriate regularity condition can be stated in the following way. 

Condition 4, ‘2. We say that the game is regular for some value a> t, if for 
any sufficiently small value of p > 0 and for any bounded closed region G in space 

{ .r) we can find a function ‘p* (6) satisfying condition (4.14) and such that 

(4.16) 

for any position (t*, 2+>, a& E G, t* < i, &B, 8* ft*, ,T*: B 1 _‘I E E Ifi? pot* 
for any extremal program {II, It,, t*), .r*, s)n,and for any point X* EZ X” (t”, 

if,, x*>* ftlh) t and if the maximal maximizing programs (,n, it* ,@ f, X* 1;; are 
weakly continuous in X* for E,, (t* : x* ,6 ) E_ (tj. fi 1 - 

For the fulfillment of Condition 4.2 it is obviously sufficient that along with the con- 

dition of weak continuity of the programs (11, It* ?@ ), X* ,;f in I* there should be ful- 
filled the convexity condition for ::he se? }irriitr (J- * t ) h emselves, in particular, the con- 
dition for the uniqueness of the point z,,,ilI E .x* (z*) satisfying condition (4.15). 

5, Pro8ra.m sbsorption sets, Let us fix a certain value 6 > f,. Let us 
divide the entire halfspace {t, X} , t g.6 into two parts. To the first part we refer the 
region wherein the inequality p,, (I. 2. fj) > (1 is satisfied. To the second part we 



940 N.N.Kraoovnkli 

refer the set af positions {t, x) for which E, (1, n,e) T= 0. The quantity a0 (t, X, 0) 
is a continuous functionof~ition {t, ,zf. This assertion derives as a consequence of the 

continuous dependenceaof the solutions x (t> of Eq, (Z-3) on the initial data by argu- 

ments similar to those presented in Sect, 3 to prove the weak upper-semicontinu~~ rela- 

tive to inclusion of the maximal maximizing programs wjth respect to a change in the 
initial point 5*. We omit this proof here. 

But from the continuity of the function E, (t, x, 6) with respect to position (8, X] 
it follows that the region e, (l, s,@) > 0, t <@ is open in the space of (tt x>, At 
the same time, any set of positions {t, x>, where t, & t <:S and z+ (t, X) < e or 
a0 (t, 2) > a (E <O is a constant), is the closed set. In particular, we are especially 

interested in the closed set kV, of positions (t, X} for which e, (t, X, 6 ) 2 0, t, & 
t <fJ . The following condition is obviously fulfilled for this set which we call the mi- 
nimax program absorption set. Whatever the position (t*, .r* > EI_ I$‘0 and no matter 

what the second player’s program (qr it,, 6 > > n turns out to be, we can always find at 

least one admissible control ?l from this program, such that the condition 5 (9) E nr 

is fulfilled for the program motion z (t) - x (ty f,. x*, q) generated by it, Further, 
by the symbol w, (a > 0) we denote the closed set of positions {t, X} for which the 

condition ea (t, a,@) & E, t,, & t GS is satisfied. The following assertion is valid. 
Lemma 5,X. Suppose that for a chosen vafue 6 > to the game is regular in the 

sense of Condition 4.1 and that a bounded region G in space {x} has been chosen. 

Then, whatever the value of & f [fi, fi”]> whatever be the position {f,. II’* > (I, < 

@)> for which x* E G and E, (t*, x*, 6 ) 7: E, and whatever be the extremal prog- 

ram (r, It,, P), 2*, s)rr (1” - t, = 6, 8* < 61, among the controls ‘11 - 2 21 (dt: 
du, du) contained in this program,we can find at least one control 7’ Z-f I]* (tic, drc, 

du) which generates the auxiliary motion z (t)* = z (tl 1,, x*, *‘I*)* (f, & t & 
t*) (4.3) satisfying the condition 

where .F* = E -t_ cp” (6)8. 
ft”, 2 (t*)*} E TV,* (5.i) 

Let us prove the lemma. We assume to the contrary that the lemma is incorrect. Then 

we can find a number e e ip, f3’], a position (t+, x*), xyc -E? G, t, <I? for which 

aa ft+, x:,6) = a, and an extremal program (q, tt,, t*;). s+, S>II (t* - t, = 6, 

t* <@), such that all auxiliary motions x: (t) ::A IL’ (t, t,, J*, ?I)* (f, & t &y l*, 
‘rj E (q}n) 4.3) satisfy the condition 

ft*, z @*)*I Ej& fit7,* (,5.2) 

We consider the mapping I* -+ I’* (x*) of elements X* E x* onto the subsets 

>‘” (LX*) c X*, This mapping leads to a contradiction, Under the assumption {5,2) 
made,no element R.* ez X* can be contained in its own image I-* (z*). Indeed, fet 
us assume to the contrary that a certain element 1: * is contained in its own image Y* 

lx*). Then by regularity Condition 4.1 we can find a control 71 E in It*, *I, x*)r1” 
which generates a program motion 2 (t) = z ft, t*, P*, $) it* “rz, t .< @ (2.3) satisfying 
the condition 

p (X (6\. .!I) s_; a -; ‘F* (6) 6 : F.‘: (5.3) 

In other words, if x8 E Y* (z*), this signifies that in the maximal maximizing program 
f% It*, 6)s z,*)n30 we can find a control q which generates a program motion .?: (i) = 
z (t, t+, x*, 71) (P << t < @) (2.3) satisfying condition (5.3). Hut by the definition of 
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the quantity eO (t*, z*, 6) this signifies the fulfillment of the inequality 

a0 (t*, 5*, 8) < E” (5.4) 

which, in its-own turn, by the definition of set IV,* signifies the fulfillment of the inclu- 

sion {t*z*J E IV,* (5.5) 

But conditions (5.2) and (5.5) are contradictory, whence it follows that there is no ele- 

ment z* E X* whatsoever which can be contained in its own image Y* (a*) C X* 

However, the mapping x* -+ Y* (x*) is a mapping of elements it.* of a convex 

bounded and closed set X* onto bounded, convex and closed subsets Y* (x*) C X* 

The sets Y* (~2~) turn out to be upper-semicontinuous reiative to inclusion with respect 

to a change in element z* Let us show this. We take a sequence of points z(‘) (k = 

1, 2, . ..) converging to point Z* as IC + -2. It is known that the maximal maximizing 

programs {n, It*, 6), z;rIoO are weakly upper-semicontinuous relative to inclusion with 

respect to a change in point .c. Hence it follows that as k + M the sets Y (2’“‘)) con- 

verge to set Y (J*) upper-semicontinuously relative to inclusion. Indeed, let US accept 

to the contrary that some convergent subsequence of points .&j’ E Y (z(‘~J)) has, as j + 

00 , a limit point .I*’ which is not contained in the set Y (9). But, by the definition 

of the sets Y (z(“!)), for each point ~(‘1) we can find a control ‘1 “I) E in, It*, 6), 5 Vi,), OC 
iI1 

which generates a program motion .Z (t) === I% (t, t*, .I Pi)_ ,)P ) J ) (1% < t ._: 6)(‘2.3) satis- 

fying the condition 
I, (r (6), ‘II) c--; E. _,~ /\ cp (8) s 

The sequence ,I(h‘i) (j = 1, 2, . . . 

(5.6) 

) can be assumed weakly convergent. The weak li- 

mit ?I1 *I of this sequence should belong to the maximal maximizing program (I), It*. 

6), &I},,““. But (h‘ ) (it.) 
lim s (t. t*, z 1 , 11 3 ) = .T (t, t*, $1, ,$*I) (5.7) 

j+xz 

therefore, condition (5.6) is satisfied also for the limit program motion c (t) = z (t, t*, 
cc’*], $*I). But this means that z’*’ E Y (z*). The contradiction obtained proves the 

upper-semicontinuity relative to inclusion of the sets Y (z*) with respect to a change 

in x*. Then, the closed convex hulls Y* (x*) of the sets 1’ (z*) also possess this 

property. 
The mapping II.* + Y* (x*) now satisfies all the hypotheses of the theorem in [7]. 

According to this theorem the mapping constructed has at least one fixed point z*, 

i.e. there exists an element x* E X* which satiafies the condition .z* tz Y* (x*). 
But, as we have noted at the start of the proof of Lemma 5.1, this inclusion is impossible. 

The contradiction obtained proves the lemma. By analogous arguments we can also 

prove a Lemma 5.2, analogous to Lemma 5.1 but now starting not from regularity Con- 

dition 4.1 but from regularity Condition 4.2. Namely, the following assertion is valid. 

Lemma 5.2. Suppose that for a chosen value 0 > LO the game is regular in the sense 

of Condition 4.2. Then, whatsoever be the bounded region G in space {x} and the 

value E E [p, p’ ],whatever be the position {l*, J*}, II’* E G, t,, < t, < 6, for 

which F” (I*, x*, fi) :-- e, and whatever be the extremal program {?I, [t,, I*), cc*, 
s}n (t* - t, m-my 6, t” < l(J). among the controls 11 contained in this extremal prog- 

ram we can find at least one control rl* which generates an auxiliary motion s (t)* 

.I’ (t, 1*, 5*, q*) (f* < t < t*) (4.3), satisfying condition (5.1). 

The proof of Lemma 5.2, similar to the proof of Lemma 5.1 and differing from it 
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only at that potnt where the weak upper-semicontinuity relative to inclusion of the map- 
ping X* --+ 1’ (a*) is proved, is omitted. 

6. Strong :trbility of net W,. Relying on Lemmas 5.1 and 5. A let us prove 
the property, important for what is to follow, of minimax strong t/,-stability of set W, 

for E E (0, @“). This property is formulated in the following way. We say that a cer- 
tain set w in the half-space {t, z}, t < fl is minimax strongly u-stable if, whatever 

be the position {t*, x*} E w (t* < fb), the number t* E (t*, fj] and the func- 
tion V which associates a set V (u) c 0 with every vector u E P , among the solu- 

tions J: (t) = x (t, t,, x*, V) of the contingent equation 

z’ (t) E J’v (t, J: (t)) (6.1) 

we can find at least one solution 1~ (t) satisfying the condition {t*, 5 (t*)} E W. 
Here the symbol Fv(t, x) denotes the closed convex hull of the set of vectors f = 
f (t, 5, U, u), which is obtained when the vector u ranges over v (u) and the vector 

u ranges over the whole set P. The following assertion is valid. 

Lemma 6.1. Suppose that for a chosen value 6 the game is regular in the sense 

of Condition 4.1 or 4.2. Then, the sets w, are minimax strongly u -stable for every 

E E (0, 0”) 
To prove Lemma 6.1 we construct that motion x (1) = z (t, t,, .z*. T/)(6.1) which 

satisfies the condition stated in the minimax strong u-stability property of set kk’,. 

We select some value of ‘E E (0, p”). Further, suppose that a position {tx, a’*} EwWcr 
an instant t* 4 6 and the function V (u) appearing in the stability conditions, have 
been chosen, We construct a set Wk8) in the space [t, X} composed from the sets 

WL+.9.(6+_t*),t (t* < t < t*) which are sections of the sets we+Vp*(s)(~-,,) by the 
hyperplanes t = const. Here cp* t6) is the function appearing in Lemmas 5.1 and 

5.2. 
Let us consider Euler’s polygonal line ~:a(&) [t] = XJ(Q [t, t,, R‘*, UE@), u [. ]] (1.4), 

where U* [t] = ui* E V (Ui)y ri < t < ~i,~ (z, = t,, ~i+l = zi + b) and the control 

ui z u (Ti, xA(S) Lail) (ri < t < zi+d is determined by the strategy U,(S) extremal 

@] to set ]VL(S). This strategy determines the function u (t, cr) for t, < t < t* in the 
following manner. If {t, s: E WE@), then as u (t, X) we can choose any vector 11 E 

P. However, if {t, L) @ WE(S), then as U, (t, X) we can choose any vector II, G P 

satisfying the condition 
max s’f (t, x, uer v) -~= min max .s’f (I, X, I(, c) 
VFQ UEP EQ 

(6.2) 

r(S) Here s is the vector 5’ - sw, where s, is a point from set fi E,l, which us closest to 
point rl: in the sense of the Euclidean metric, The following estimate is valid for the 

Euler’s polygonal line ZA(Q [t] being considered. Suppose that a certain position 
{‘Cf, XA(S) [zi]} @ \V,CS) has been realized on this polygonal line TV [t] at some 
instant t = -ci . Then (GA) 

P2 (XA(S) lzi+ll 7 w E+‘p’(S)(si+‘-l,).ri+,~ <P2 (“A@) [Til, %+?y8)(Ti-f*),sJ (1 + 2hB) t fJ (6) 

where o (6) denotes a higher-order infinitesimal relative to 6, while 3, is the Lipschitz 
constant for the right-hand side of Eq. (1.1) in that region G of space (.r}, wherein 

lie all the motions being considered. The estimate (6.3) is uniform for all considered 

values of t; along all the Euler’s polygonal lines .TA(S) [I] of interest to us. 
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Estimate (6.3) is derived by means of comparing the segment of interest of the Euler’s 

polygonal line zj(st [t] (ti < t < ri+J with a certain program motion 2 (t)* = z (t, TV, 
5 (i) 

u) ’ Q)*, 3 E {r, [Xi, Zi+I), I [ZJ, 2 [ZJ - z,iij)n, where zWfZ1 is a point from Wg?,, 
nearest to z[ril. Here the motion 5 (t)* indicated is precisely that program motion 
which in accordance with Lemma 5.1 or with Lemma 5.2 satisfies the condition 

(6.Q 

This comparison, leading to estimate (6.3). is omitted here since it is analogous to the 
arguments in [Z], only that the saddle-point condition (see condition (2.1) in [2]) ocur- 
ring therein should be replaced by the minimax condition (6.2) occurring herein, taking 

into account condition (2.7) characterizing the extremal program 

{?t hi, %+A), z [Zil, x ITil - sq WKI 

The estimate 
(6.5) 

where 0 (6) is a quantity satisfying the condition lim 0 (6) = 0 as 6 -+ (1, is deri- 

ved from the estimate (6.3) for the whole of Euler’s polygonal line xA(&) [tl (t, < 

t & t*) also by arguments analogous to those in @]. It now remains to choose the 
sequence of numbers 6, + 0 as lc --f 00 and to examine the sequence of correspond- 
ing Euler’s polygonal lines A@ [t] == ~~(6,) flf. From this sequence we can select a 
subsequence which converges uniformly on the interval It,. f* 1 to some absolutely 
continuous function z* (f) -- z* (t, t,, a+). From estimate (6,5) it follows that the 
limit function ,x* (t) satisfies the condition {1*, z* (t*)}E w,. On the other hand, 
we can verify (see [S]) that the limit function I* (t) constructed is a solution of the 

contingent equation (6.1). Thus, we have indeed constructed a solution x* (t> == .z.* 

P, t,, x*9 V) of the contingent equation (6.1) satisfying the condition (t*, X* 

(1*)) E w,. By the same token we have proved Lemma 6.1. 

I. Strong atsbllity of the rb8orption 8et W,. The minimax strong 
u-stability of sets W, for E E (0, p') , proven in Sect. 6, permits us to establish that 

the absorption set IV, also possesses the analogous property. Let us show this. The fol- 

lowing assertion is valid. 

Lemma 7.1. Suppose that for a chosen value 6 > t, the game is regular in 
the sense of Condition 4.1 and 4.2. Then rhe minimax absorption set W, is a minimax 

strongly z&-stable set, 

Indeed, let us assume that Lemma 7.1 is incorrect. Then we can find a function 
V lu),a position {t*, x*) e w, and an instant t* E (t.+., @J , such that all solutions 

2 (tf = 5 (8, t,, GR, VI of Eq. (6. I) satisfy the condition 

it*, :c @“)I g bv-0 (7.1) 

Since set W0 and the set of all points {t*, x’ (t*)} are closed sets, then from (7.1) 
follows the inequality 

P ({I”, 2 fr*)), W,,) 2 y > 0 (i.2) 

and. therefore, as a consequence of the continuity in tan:! x of the function z0 (t, X, 
6) we have the inequality 

PO (t*, 5 (t*), 0) > 8, > 0 (7.3) 

Wtiere F., is some positive number. Consequently. the relation 
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it*, 2 o*P)1 G?z WC” (7 A) 

is valid for all the motions 5 (t) being considered. But condition (7.4) contradicts the 
minimax strong u-stability property of set Wzy, because {ta, x+) E W, c w,“. 
The contradiction obtained proves Lemma 7.1, 

8. The br8lo reeultr The following assertion is valid. 
Theorem 8.1. Suppose that for some value 6 > t, the initial position (&I, 

TO) E W, and that the game is regular in the sense of Condition 4.1 or 4.2. Then, 
the strategy U” -+ no (t, a$, extremal to the set Wet solves Problem 1.1. Here the 
inclusion 

z lzr] E: M (8.1) 

is valid for every motion x [t] = x [t, to, to, U”] 
Recall that the strategy U” + 1~’ (t, x), extremal to set W,, is defined by the fol- 

lowing conditions. If position {t, x} e W,, then as u0 (t, X) we can choose any vec- 

tor u E P. If, however, position {t, J} @ W,, then we construct the vector s = z - 
zc where ,r” is a point of the section W,, r of set We by the hyperplane t = con&, 
closest to point x in the Euclidean metric. Now as u3 (t , I) we can choose any vector 
uG E V which satisfies the condition 

max .s’f (t, 2, u”, u) = min max s’f (t, z, u, u) (8.2) 
@EQ UEP EQ 

The validity of Theorem 8.1 is derived immediately from Lemma 7.1 by arguments 
analogous to those presented in @I, According to Theorem 8.1 regularity Conditions 

4.1 and 4 .2 prove to be sufficient for constructing the strategy U” f uc (t , E) which 

solves Problem 1.1 and consequently permits the fiit player to terminate the game success- 
fully. These conditions cover many of those applicable in various encounter games (for 

example, see [l, 6, 9]).and first of all in pursuit games in the cases when the controls 

ZJ and U of the right-hand side of Eq. (1.1) are additively partitioned. One sufficient 
condition for the regularity of a game in the sense of Condition 4.1 is given in Sect. 9, 

9, Regulrr CIIO, We present one case when the game is regular in the sense of 
Condition 4.1, We assume that the function f (r, 2, U, V) in the right-hand side of 

Eq. (X.1) has continuous partial derivatives df / 8~~ (i = 1,2, , . . , n). Then it is use- 
ful to state the following condition. 

Condition 9.1. We say that the game is strongly regular for some value 6 > t, 
if the function f (t, 5, u, v) has continuous partial derivatives and if for every initial 

position {t*, J* > (f, < 6) satisfying the condition &o it+, .r’*? 6) G (0, @“), 
Problem 3.2 has a unique solution q’ (at, du, du { [t, , 6), x* j” and the point ZM E 
hf, closest to the point .z = X” (0)’ -.: x0 (6, t,, xx, q’ 1 6)“, is unique. 

The following assertion is valid. 
Lemma 9.1. If Condition 9.1 is fulfilled for some value 6 > t, , then the game 

is regular for this value 0 in the sense of Condition 4.1. 

Let us prove Lemma 9.1, We fix a certain position {t.+, x.+} (t, <@), for which 

E,,(1*.J.*,@)F EE-_2P,p-I,p>o, 
ma1 program {rl, ]tr, t*), 2*:, S}II. 

a r&amber t* -= t, + 6 < 6 and a certain extre- 
As a consequence of the fact that the region &o (t, 

s, 8) > fi > (i is open for t < 6, we can assume the number 6 > ci to be so small 

that all points X =~ .Z (t*, t *,s*, jl)*,for 11 fz {q, I!,, t*), x*, S}II remain in the 

region e, (1* , <T, 6) E (p, 2B”)_ Thus, we can assume the set X* as lying in the region 
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co ct*, 5, 6) E(fi, Z@“). But then the condition E,, (t*, z*, 6) E (fi, 2/3”)is filfilled 
for any point X* E X* and, consequently, in accordance with Condition 9.1. Problem 

3.2 has a unique solution q’ (dt, du, dv 1 it*, 6), z*)’ for the position {t*, LX*}, 
where z* E X*. 

We select some point z * E X*. Let z” (t)” = x3 (t, t*, z*, ‘17‘ 1 S)’ be the 

corresponding optimal program motion and let xnr E M be a point closest to the point 

5 = x0 (S)O. By the expression G (t*, x, 6, {r}n) we denote the attainability region 

at the instant t = 6 from the position (t*, 5) for the program motions 5 (t) = 5 (t, 

t*, x, 7) with 7 E {q}rr. In other words, G (t*, x, 6, {q}n) is the set of points 
x in space {x} bver which the point z (6) = 5 (6, t*, a+, 1) ranges under all possi- 

ble admissible program controls q E {q, it*, fi)}n. 
let us consider the region G (t*, x*, 6, {q, [t*, I?), x*}z. By Condition 9.1 

in this region there is a single point 5’ = X“ (8)O closest to set A! in which, in its 

own turn, there is a single point x&t closest to point 2”; here, p (z”, M) = E,, (t*, 

z*, 6) E (fi, Q’). W’ e now choose all possible points IC from set X*, however, leav- 
ing the program {q }n = (11, [t*, 6), x* };; unaltered. To check Condition 4.1 we 
need to estimate here the set Y* (z”) namely, the convex hull of the set Y (x*) of 

those points x** E X* for which the region C: (t*. ,x**, 6, {q, [t*, a), x*}E) 
intersects with the &,-neighborhood of set M, where E* = E + Kq (6) 6 (4.9) and 
the function cp (6) satisfies condition (4.5). 

Our problem is to show that we can choose E* = E + ‘p* (6) 6 (4.12) in such a 

way that for all points x** E Y* (x*) each of the regions G (t*, z**, 6, (7, [t*, 
6)) z* }@ intersects the E *-neighborhood of set M. To do this we consider the follow- 
ing geometric picture. By the symbol G&1 we denote the closed (-M) -neighborhood 

of the attainability region G, i.e. the set of points x - VZ, where .z E G and m E 

l&r. Obviously, the region G (i*, z, 6, {~}n) intersects some Euclidean e-neighbor- 

hood of set ikl if and only if the corresponding region G&r intersects the sphere (1 z 11 & 

E. Thus, we need to show that we can select e* = E + ‘p* (6) 6 such that for all 

points x** E Y* (x*) each of the regions & (t*, x**, 6, {q, [t*, 6), z*}F) 
intersects the E* -sphere 11 x 11 S E*, and the function ‘p* (6) satisfies condition 

(4.11). 
To do this we first estimate the set Y, (x*) of those points x** E X* for which 

the point x = 5 (6) = x (6, t*, x**, q” (dt, du, du 1, [t*, I?), x*)“) + so inter- 
sects with some suitable sphere 11 z 11 ,( E *. Here so = x~~ - z” (fi)“. Since the right- 

hand side f (t, z, u, u) of Eq. (1.1) is a differentiable function, the change in the solu- 
tion x (t) of Eq. (2.3) under a variation of only the initial condition Ax (t*) r x - 
rt.* with an unaltered program control r~ = r~‘, is defined in the first approximation 
and to within terms of a higher order of smallness relative to Ax (and, therefore, by the 
choice of x E X*) and also to within terms of a higher order of smallness relative to 
6, by the solution of the integral variational equation 

Thus, when the point J’ describes the set X * , the point J: = T (0) -t s’ describes, 
to within terms of order o (6), a certain set X4* obtained by means of some nonsin- 
gular linear transformation b of the set X* This set Xa* ~~ {do)) is described by 
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the reIation 

X(a) = Ic* (@)” + so + B6x (t”) = P (8)” + so + 6x (6) l9.2) 

for 6z (t*) = z - x* 

Thus, as is the set X*, the set ‘ye* also proves to be bounded, convex, and closed. But 
in this case the intersection Za* of set Xg* with any o-sphere (( z 1) < CT is also a 

bounded convex closed set and its pr3mage Z* under transformation (9.2) is as well a 
bounded convex closed set. 

Let us now show that For a suitable choice of r~ (6) = E* = E. (tBr z*:, 6) -/- 

'p* (6) 6 (rp* (6) ---f 0 as 6 3 0) the closed convex hull Y* (z*) of the set Y(x*) 
is contained in set z*. This, by the same token, will prove J&mma 9.1. Thus, let us 
prove that the inclusion Y* (x*) c 2 * is valid for a suitable choice of (J = E* . 

For this purpose, around the point 5 = z” (6)” + $ in the region G,u (1*, x*, 6, 

017 it*, 6), z* $) we isolate a certain Q (6) -neighborhood GE which in this 
region and in the regions Gdf (t * , 3, 6, {q, It*, 6), .x*}f’;) deformed as a result of 
a change in the initial condition x can intersect only with the &*-sphere 11 z 11 & E*. 

Here, for different initial points X* and x in the regions G,,l (t*, z*, 6, {q, [t*, fk), 

x*1;) and GM (t*, I, 6, {q, [t*, ft), x*}g) we identify those points to which the 

corresponding motions z (t) = IC (t, t*, x*, q) + s 6 (t - 6) and x (t) = ~1: (t, 1*, 

5, Vfll -tot& ft - 6) arrive at the instant t = @ under one and the same control 

q E {q}n and for the same ,s = -RX, m E M. Here 0 (6) denotes a quantity 
which satisfies the condition lim 0 (6) = 0 as 6 --f 0 and 6 (t) denotes the Dirac 
6 -function. We can verify that under a change of initial conditions Ax = 5 - 2* 
the isolated piece G$ of region GM is displaced and is deformed such that to within 

a displacement of order o (6) it is displaced translationally along the vector BAx. 
Now let some point x** E Y (ST*). This signifies that in the region G$ (t*, x**, 

6, {q, [t*, 6), x*}E) there is a point X: rr= z (S, t*, x**, ?I**) f s** which 
lies in the &,-sphere 11 II: ]I& E*. We can show that under this condition a certain point 
x!:’ E XB*, representing the point z (6, t*, x**, qO) + so in the linear approxima- 

tion (9.1) , lies in an appropriate e*- sphere 11 2 11 < E*. 
Let us show this. Suppose that the point x (6, t*, x**, q’) + so has been shifted rela- 

tive to the point z (8, f*, x*, q”) + so by a certain vector Ax (6). Then, to within a 

term of order : (6) , the point z (6, t*, x**, Q**) + s** is shifted relative to the point 

z (6, t*, z*, II**) + s** by that same vector Ax (8). Further, to within terms of order 
r,* (6), the change in the distance from the point z (6, t*, z*, r]@) + so to the point 

2 = 0 under the displacement AZ (6) = J: (6, t*, z**, 3’) - z (6, t*, z*, 77’) is repre- 
sented by the scalar product 11: (6, t*, z*, $) + so]’ AZ (6) / I/ 2 (6, t*, xx. q”) -i- so /I+ 
It is easy to see that with the same accuracy this scalar product also represents the change 
in the distance frotu the point .IZ (6, t*, CC**, ,I**) + s** to the point z = I) under the 
displacement AX** (6) == CC (6, t*, z**, ‘I)**) - x (0, t*. x*+ q**). Here the estimates 

are uniform in every bounded closed region G of space (2) for the values E,, (tx, z*, 
6) = E E (2 6, v). Since the quantity I/ z (6, t*, x*, qc) + so I/ is by its definition not 
greater than the quantity jj x @, t*, z*, q**) -+ s** 11, we conclude that we can find a 

function q* (8) satisfying the condition fim ‘p* (6) = 0 as ~3 -f 0 and such that the 
point z = J: (6, t*, x**, q”) -!- so lies in the E* -neighborhood of the point z = 0, 

where e* = E -L ‘F* (6) 6, if only the region G, (t*, x**, @,.(q,[t*, I?), x*}~“‘) inrer- 
sects the closed e,-neighborhood of the point z = 0. 
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But this signifies that the closed convex set Z* contains set Y (x*) and, therefore, 
set Z contains the closed convex hull Y* (x*) of set Y (cc*). However, by the same 

token we have proved that for any point z E Y* (x*) we can find at least one control 

‘rj = q (dt, dlb, du, or, precisely, the control q = q” (dt, du, du 1 [I?*, 6), 5*)’ 
which generates the niotion x (t) = x (t, t*, X, q”) arriving at the instant t = 6 
into the E* -neighborhood of set M, where e* = E + ‘p* (6) 6. This means that 

regularity Condition 4.1 has been satisfied. Lemma 9.1 is proved. 

The following result is obtained from Lemma 9.1 and Theorem 8.1. 

Theorem 9.1. Let the function f (t, 2, u, U) in the right-hand side of Eq. (1.1) 

have continuous partial derivatives df / hi (i = 1, 2, . ..n) and let the following 
condition be fulfilled for some value 6 > t, : if the inequality 0 < e,, (t,,., .z*, 

6) <3P” is valid for a given position {t *, x*} (to<&< 6) , then the optimal control 

rl” (dt, du, dv I It,, W, GA”, solving Problem 3.2 for this position, is unique and the 
point ~11 E M, closest to the point 5’ (fi)O = x0(+, t,, cc*, 11”). is unique, Then, 
under the condition {t,, z,,} E i$‘, , the strategy TJ” + u” (t, x), extremal to the 

absorption set WO, solves Problem 1.1. Here the inclusion 

x 161 E M 

is valid for any motion x [tl pi- x [t. t,, x0, VI e 

(9.3) 
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